Skip to main content

New Drug Approvals 2013 - Pt. XXI - Eslicarbazepine Acetate (AptiomTM)




On November 8th 2013, FDA approved Eslicarbazepine Acetate (tradename: Aptiom; research codes: Sep-0002093, BIA 2-093; ChEMBL: CHEMBL87992), a prodrug indicated as adjunctive treatment of partial-onset seizures associated with epilepsy.

Epilepsy is neurological disorder characterised by abnormal neuronal activity in the brain. Partial-onset seizures, as opposed to generalised seizures, affect initially only one part of the brain and, depending on the part of the brain that is affected, these seizures will present different symptoms.

Eslicarbazepine (ChEMBL: CHEMBL315985), the bioactive ingredient of the prodrug Eslicarbazepine Acetate, exerts its anticonvulsant activity by blocking the voltage-gated sodium channel (VGSC). VGSC has 3 distinctive states: the resting state, during which the VGSC is closed but responsive to a depolarisation impulse, the open state, during which the channel is open allowing the sodium ion to enter the cell, and the inactivated state, in which the channel is closed again but irresponsive to voltage changes. Eslicarbazepine binds and stabilises the inactive form of the VGSC, preventing its reversion to the resting form and limiting sustained repetitive neuronal firing.

VGSC (ChEMBL: CHEMBL2331043) is a single alpha-subunit with four repeat domains each containing six transmembrane segments. A 3D structure of the VGSC in an open conformation (PDBe: 4f4l) is shown below.



Eslicarbazepine Acetate is a synthetic small molecule with a molecular weight of 296.3 g.mol-1, an ALogP of 2.4, 3 hydrogen bond acceptors, 1 hydrogen bond donor, and therefore fully compliant with Lipinski's rule of five.
IUPAC: [(5S)-11-carbamoyl-5,6-dihydrobenzo[b][1]benzazepin-5-yl] acetate
Canonical Smiles: CC(=O)O[C@H]1Cc2ccccc2N(C(=O)N)c3ccccc13
InCHI: InChI=1S/C17H16N2O3/c1-11(20)22-16-10-12-6-2-4-8-14(12)19(17(18)21)15-9-5-3-7-13(15)16/h2-9,16H,10H2,1H3,(H2,18,21)/t16-/m0/s1


The recommended starting dosage of Eslicarbazepine Acetate is 400 mg once daily. After one week, the dosage should be increased to 800 mg once daily (recommended maintenance dosage). The maximum recommended maintenance dosage is 1200 mg once daily (after a minimum of one week at 800 mg once daily).

After oral administration, Eslicarbazepine Acetate is mostly undetectable, since it is extensively and rapidly metabolised by hydrolytic first-pass metabolism to its major active metabolite, Eslicarbazepine, corresponding to 91% of systemic exposure. Eslicarbazepine is highly bioavailable with an apparent volume of distribution of 61L for body weight of 70Kg, a relatively low plasma protein binding (< 40%) and an apparent half-life in plasma of 13-20 hours. Other minor active metabolites of Eslicarbazepine Acetate include (R)-Liscarbazepine and Oxcarbazepine, corresponding to 5% and 1% of systemic exposure, respectively. Eslicarbazepine Acetate metabolites are eliminated mainly by renal excretion, in the unchanged and glucuronide conjugated forms, with Eslicarbazepine and its glucuronide accounting for more than 90% of total metabolites excreted in urine.

The licensed holder of Eslicarbazepine Acetate is Sunovion Pharmaceuticals Inc. and the full prescribing information can be found here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d