Skip to main content

New Drug Approvals 2011 - Pt. XXI Rivaroxaban (XareltoTM)






ATC code: B01AX06

On July 1st, FDA approved Rivaroxaban (trade name: Xarelto, Research code: BA-59-7939, NDA 022406), an anti-coagulant to prevent deep vein thrombosis (DVT) in patients with knee or hip replacement surgery. Rivaroxaban is the first orally applied direct inhibitor of Factor Xa (FXa), a key regulatory of the coagulation cascade. In DVT, a blood clot is formed which can dislodge and travel to the lungs, causing pulmonary embolism which can be potentially fatal.


Factor Xa (EC number 3.4.21.6, UniProt ID P00742, OMIM 613872) is a serine endopeptidase, cleaving prothrombin into its active form, thrombin, which then activates further downstream factors which ultimately lead to platelet activation and fibrin formation, clotting the damaged blood vessels. The sequence of Factor X is

>Factor X
MGRPLHLVLLSASLAGLLLLGESLFIRREQANNILARVTRANSFLEEMKKGHLERECMEE
TCSYEEAREVFEDSDKTNEFWNKYKDGDQCETSPCQNQGKCKDGLGEYTCTCLEGFEGKN
CELFTRKLCSLDNGDCDQFCHEEQNSVVCSCARGYTLADNGKACIPTGPYPCGKQTLERR
KRSVAQATSSSGEAPDSITWKPYDAADLDPTENPFDLLDFNQTQPERGDNNLTRIVGGQE
CKDGECPWQALLINEENEGFCGGTILSEFYILTAAHCLYQAKRFKVRVGDRNTEQEEGGE
AVHEVEVVIKHNRFTKETYDFDIAVLRLKTPITFRMNVAPACLPERDWAESTLMTQKTGI
VSGFGRTHEKGRQSTRLKMLEVPYVDRNSCKLSSSFIITQNMFCAGYDTKQEDACQGDSG
GPHVTRFKDTYFVTGIVSWGEGCARKGKYGIYTKVTAFLKWIDRSMKTRGLPKAKSHAPE
VITSSPLK

Factor X itself is synthesized as an inactive precursor, and is further processed into a mature form, consisting of a light and an "activated" heavy chain (=FXa, residues 235-488, bold in the above sequence, carrying a trypsin-like domain, Pfam PF00089) (green and red in the below picture, respectively). There is a plethora of experimentally solved structures available for FXa, and also a holostructure of FXa in complex with Rivaroxaban, PDBe:2w26.

 
Rivaroxaban (ChEMBL ID 198362, ATC code B01AX06, PubChem CID 6433119) has molecular weight of 435.9 Da, an ALogP of 1.8, 5 rotatable bonds, 6 hydrogen bond acceptors, 1 hydrogen bond donor, and is thus fully Rule-of-Five compliant. It is dosed as a pure (S)-enantiomer. Canonical Smiles, Smiles=Clc1ccc(s1)C(=O)NC[C@H]2CN(C(=O)O2)c3ccc(cc3)N4CCOCC4=O, Standard InChi, InChI=1S/C19H18ClN3O5S/c20-16-6-5-15(29-16)18(25)21-9-14-10-23(19(26)28-14)13-3-1-12(2-4-13)22-7-8-27-11-17(22)24/h1-6,14H,7-11H2,(H,21,25)/t14-/m0/s1. Rivaroxaban is known to have a sub-nanomolar (0.7 nM) IC50 to the active site of human FXa.


Xarelto is administered orally as a 10 mg tablet once daily for 12 or 35 days (after knee/hip replacement surgery, respectively), yielding ~23 umol of active substance per single dose. Most relevant risks connected to Xarelto treatment are serious and fatal bleeding.

It has been given a boxed warning for spinal/epidural hematoma in surgical settings. It has not been tested in pregnant women, nursing mothers, or pediatric settings; majority of participants in clinical trials were 65 years and over, and the efficacy of Xarelto in the elderly was found to be similar to that seen in younger patients. The effect of Xarelto lasts 8-12 hours, but FXa activity stays depleted during 24 hours, so a once-daily dose is sufficient.

It has high (80-100%) bioactivity and is rapidly absorbed, reaching Cmax at 2 to 4 hours. Its volume is distribution is Vss=50 L. Little metabolism is observed for rivaroxaban, with the majority of the dose excreted unchanged.

The USAN/INN name stem, -xaban of rivaroxaban, designates a FXa inhibitor. Alternative anticoagulants, inhibiting FXa indirectly, include Heparin (ChEMBL ID 526514), an activator of Antithrombin, which itself is a FXa inactivator; Warfarin (ChEMBL ID 1464), a vitamin K antagonist, vitamin K being required for FXa biosynthesis. However, numerous other direct FXa inhibitors are currently being developed, e.g. Apixaban (BMS-562247-01, ChEMBL ID 231779), Betrixaban (PRT-054021, ChEMBL ID 512351), Edobaxan (Du-176b), Eribaxaban (PD-348292), Fidexaban (ZK-807834), Otamixaban (XRP-0673), YM-150, YM-466, Letaxaban (TAK-442), and GW-813893.

Xarelto has been developed by Bayer Schering AG. In US, it will be marketed by Janssen Pharmaceuticals, Inc.

The product website can be found here, the full prescribing information, here.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d