Skip to main content

2010 New Drug Approvals - Pt. V - Carglumic acid (Carbaglu)




ATC code: A16AA05

On March 18th, the FDA approved carglumic acid to be marketed under the name Carbaglu as the first specific treatment for a rare form of hyperammonaemia. Carbaglu has been marketed in Europe since 2003. The ATC code is A16AA05.

Carglumic acid is used to treat a deficiency in the enzyme N-Acetyl Glutamate Synthase (NAGS), which leads to acute hyperammonaemia. NAGS deficiency is a very rare genetic disorder where a single base deletion in chromosome 17q leads to a frameshift mutation in the NAGS gene (UniProt: Q8N159) (this leads to a non-functional protein product). It is estimated that it occurs in one of ~50,000 births and due to the rareness of this autosomal recessive disorder, Carbaglu is considered as an orphan drug. NAGS deficiency manifests within the first week of life with unspecific symptoms such as failure to feed, low body temperature and sleepiness. If left untreated, the accumulation of ammonia (hyperammonemia) in the patient's blood causes lethargy, vomiting, deep coma and fatal cerebral oedema.

The catalytic product of NAGS is N-acetylglutamate, the endogenous activator of the first step in the urea cycle. Individuals with NAGS deficiency have low levels of N-acetylglutamate and the elimination of ammonia through the urea cycle is therefore impaired. Carglumic acid is a close structural analogue of N-acetylglutamate but is more stable against enzymatic hydrolysis and penetrates mitochondrial membranes more efficiently. Like N-acetylglutamate, Carglumic acid activates the urea cycle (via activating the mitochondrial protein Carbamoyl Phosphate Synthase 1 (CPS 1) (UniProt: P31327), thus keeping ammonia blood levels low.

Carglumic acid is administered orally and the daily dose is to be adjusted between 100 and 250mg/kg (for a typical 70kg adult, this corresponds to a daily dose of 7g, or ~37 mmol.day-1). The apparent Volume of distribution (Vd) is 2657L, and has a mean elimination half-life (t1/2) of 5.6 hr, and a total clearance of 5.7 L.min-1.



Carbaglu was developed by Orphan Europe and is marketed in the United States by Recordati S.p.A.
The full prescribing information for Carbaglu can be found here.
SMILES: NC(=O)N[C@H](C(=O)O)CCCC(=O)O
Molecular Formula: C7H12N2O5
Molecular Weight: 204.18058
InChI (v1.02b): InChI=1/C7H12N2O5/c8-7(14)9-4(6(12)13)2-1-3-5(10)11/h4H,1-3H2,(H,10,11)(H,12,13)(H3,8,9,14)/t4-/m0/s1
InChI Key (v1.02b): XLHYCHOTNOPCMP-BYPYZUCNBE

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d