Skip to main content

New Drug Approvals - Pt. XX - Pazopanib (Votrient)



Another drug onto the market this month is Pazopanib, marketed as Votrient, which was approved on October 19th. Pazopanib Hydrochloride (previously known as GW-786034-B) is the sixth drug to be approved for kidney cancer, after Sorafenib (trade name Nexavar), Sunitinib (trade name Sutent), Temsirolimus (trade name Torisel), Everolimus (trade name Afinitor) and Bevacizumab (trade name Avastin). Sorafenib and Sunitinib are both orally dosed small molecule inhibitors of tyrosine protein kinases, which interfere with tumor growth by inhibiting angiogenesis as well as tumor cell proliferation; Temsirolimus and Everolimus are specific inhibitors of mTOR (mammalian target of rapamycin), a serine-threonine kinase, which interfere with the synthesis of proteins that regulate proliferation, growth, and survival of tumor cells; Bevacizumab is a monoclonal antibody that recognizes and blocks VEGF, which is a chemical signal that stimulates angiogenesis. Pazopanib is a small-molecule drug (Molecular Weight is 437.5 g.mol-1 for Pazopanib itself and 474.0 g.mol-1 for the HCl salt), fully Rule-of-Five compliant, lipophilic and practically insoluble in aqueous media. It is orally absorbed, has a high plasma protein binding of >99% and is metabolized by CYP3A4 (and therefore has many drug-drug interactions with substrates, inhibitors and inducers of CYP3A4) with minor contribution from CYP1A2 and CYP2C8. Pazopanib has a mean half-life of 30.9 hours and elimination is primarily through feces (>96% of dose). The recommended dosage is 800mg once daily (equivalent to ca 1.8 mmol). Among one of the potential adverse events is the propensity for the compound to increase QT interval. Full prescribing information can be found here. Pazopanib has a boxed warning. The structure 5-[[4-[(2,3-dimethyl-2H-indazol-6­-yl)methylamino]-2-pyrimidinyl]amino]-2-methylbenzenesulfonamide. Pazopanib is largely planar and and mimics the adenine ring of the enzyme cofactor ATP. Of additional note is the presence of an aryl-sulphonamide (in the bottom left of the image) - these are often weakly acidic.
<NAME="Pazopanib">
<SMILES="O=S(=O)(N)c1c(ccc(c1)Nc2nccc(n2)N(c4ccc3c(nn(c3C)C)c4)C)C">
<InChI="InChI=1/C21H23N7O2S.ClH/c1-13-5-6-15(11-19(13)31(22,29)30)24-21-23-10-9-20(25-21)27(3)16-7-8-17-14(2)28(4)26-18(17)12-16;/h5-12H,1​-4H3,(H2,22,29,30)(H,23,24,25);1H" >
<InChIKey="MQHIQUBXFFAOMK-UHFFFAOYAU">
<ChemDraw=Pazopanib.cdx>
The manufacturer of Pazopanib is GlaxoSmithKline and the product website is www.votrient.com.

Comments

coolfx89 said…
Pazopanib (brand name Votrient) is a powerful and selective multi targeted sensory receptor tyrosine kinase inhibitor of VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-a, and c-kit that blockings tumor development and reduces angiogenesis.

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d