Skip to main content

New Drug Approvals - Pt. XIII - Saxagliptin (Onglyza)

On the 31st July 2009 Saxagliptin (tradename Onglyza) was approved for the treatment of Type II diabetes - Type 2 Diabetes is also known as adult-onset diabetes, and also non-insulin-dependent diabetes melittus (NIDDM). It is the type of diabetes that is often associated with obesity, and so is an increasingly common disease/condition in our well-fed western and also developing world cultures.

Saxagliptin (previously known by the research code BMS-477118) is the third orally-dosed Dipeptidyl peptidase-IV (or DPP-IV) inhibitor to market, and is in the same mechanistic class as other 'gliptins' - Sitagliptin (tradename Januvia) and Vildagliptin (tradename Galvus/Eucreas) which are both launched and also others such as Alogliptin (aka SYR322) and Linagliptin (aka BI-1356, and expected tradename Ondero), which are in late stage clinical trials. The DPP-IV drug class has had quite a complex development and commercial history, as web searches will readily show.

Saxagliptin is a small molecule drug (Molecular Weight of 315.4 g.mol-1 for Saxagliptin itself, and 334.43 g.mol-1 for the Saxagliptin monohydrate dosed ingredient), and has low aqueous solubility. Saxagliptin is well absorbed and has low plasma protein binding (<30%),>ca. 15.8 µmol) once a day. The full prescribing information can be found here.

The Saxagliptin structure is (1S,3S,5S)-2-[(2S)-2-Amino-2-(3-hydroxytricyclo[3.3.1.13,7]dec-1-yl)acetyl]-2-azabicyclo[3.1.0]hexane-3-carbonitrile. It contains a number of interesting chemical groups, and a clear underlying similarity to a dipeptide can be seen in the 2-D structure (the enzyme DPP-IV, a proteinase, cleaves the two N-terminal amino acids of its substrate peptides)). Normally DPP-IV is involved in the inactivation of two endogenous peptides, GLP-1 and GIP, by DPP-4, blocking this degradation potentiates the secretion of insulin in the beta cells and suppress glucagon release by the alpha cells of the islets of Langerhans located in the pancreas. The first functional group of note is the nitrile (the triple bonded nitrogen-carbon unit) - this is essential to the inhibitory activity and is found in several of the other 'gliptins. This group forms a reversible, covalent bond with the residue Ser 630 of DPP-IV. Secondly, there is the bulky, hydrophobic adamantane (or (tricyclo[3.3.1.13,7]decane) group (this is the 3-D cage like portion of the molecule. Simple substituted adamantanes are sometimes drugs in their own right, for example amantadine, memantine and rimantadine. Within the 'gliptins though, the large bulky adamantyl group blocks an intramolecular cyclisation, which inactivates the inhibitor. These nitrile and adamantyl groups are linked via an amide bond, and an unusual 5,3 fused ring system pyrollidine (which resembles the amino-acid proline, found in the corresponding position of natural substrates).

Saxagliptin canonical SMILES: C1CC2(CC3CC1C(C3)(C2)O)C(C(=O)N4C(CC5C4C5)C#N)N Saxagliptin InChI: InChI=1S/C18H25N3O2/c19-8-13-4-11-5-14(11)21(13)16(22)15(20)17-2-1-12-3-10(6-17)7-18(12,23)9-17/h10-15,23H,1-7,9,20H2/t10?,11?,12?,13-,14-,15+,17?,18?/m0/s1 Saxagliptin InChIKey: SBBHGAZNWZOMBJ-TXTOARCRSA-N Saxagliptin CAS registry: 361442-04-8 Saxagliptin ChemDraw: Saxagliptin.cdx

The license holder for Saxagliptin is Bristol Myers Squibb and the product website is www.onglyza.com.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding ...

SureChEMBL gets a facelift

    Dear SureChEMBL users, Over the past year, we’ve introduced several updates to the SureChEMBL platform, focusing on improving functionality while maintaining a clean and intuitive design. Even small changes can have a big impact on your experience, and our goal remains the same: to provide high-quality patent annotation with a simple, effective way to find the data you need. What’s Changed? After careful consideration, we’ve redesigned the landing page to make your navigation smoother and more intuitive. From top to bottom: - Announcements Section: Stay up to date with the latest news and updates directly from this blog. Never miss any update! - Enhanced Search Bar: The main search bar is still your go-to for text searches, still with three pre-filter radio buttons to quickly narrow your results without hassle. - Improved Query Assistant: Our query assistant has been redesigned and upgraded to help you craft more precise queries. It now includes five operator options: E...

ChEMBL webinar @ School of Chemoinformatics in Latin America

Recently, the ChEMBL team participated in the " School of Chemoinformatics in Latin America " which was kindly organized by José Medina-Franco and Karina Martinez-Mayorga (both at the National Autonomous University of Mexico). The event was very well attended with 1,181 registrants from 79 different countries. 57% of the participants attended from Latin America, 23% from Asia, and around 8% from Africa and Europe, respectively. 52% of the participants were students (undergraduate and graduate students). Distribution by country Distribution by role Participants could learn a bou t the ChEMBL database and UniChem. We covered different topics to answer these questions: • What is ChEMBL and how is it structured ? • Which data does ChEMBL contain ? • How is data extracted from scientic articles ? • How is the data in ChEMBL curated ? • How is drug ...

Here's a nice Christmas gift - ChEMBL 35 is out!

Use your well-deserved Christmas holidays to spend time with your loved ones and explore the new release of ChEMBL 35!            This fresh release comes with a wealth of new data sets and some new data sources as well. Examples include a total of 14 datasets deposited by by the ASAP ( AI-driven Structure-enabled Antiviral Platform) project, a new NTD data se t by Aberystwyth University on anti-schistosome activity, nine new chemical probe data sets, and seven new data sets for the Chemogenomic library of the EUbOPEN project. We also inlcuded a few new fields that do impr ove the provenance and FAIRness of the data we host in ChEMBL:  1) A CONTACT field has been added to the DOCs table which should contain a contact profile of someone willing to be contacted about details of the dataset (ideally an ORCID ID; up to 3 contacts can be provided). 2) In an effort to provide more detailed information about the source of a deposited dat...

Improvements in SureChEMBL's chemistry search and adoption of RDKit

    Dear SureChEMBL users, If you frequently rely on our "chemistry search" feature, today brings great news! We’ve recently implemented a major update that makes your search experience faster than ever. What's New? Last week, we upgraded our structure search engine by aligning it with the core code base used in ChEMBL . This update allows SureChEMBL to leverage our FPSim2 Python package , returning results in approximately one second. The similarity search relies on 256-bit RDKit -calculated ECFP4 fingerprints, and a single instance requires approximately 1 GB of RAM to run. SureChEMBL’s FPSim2 file is not currently available for download, but we are considering generating it periodicaly and have created it once for you to try in Google Colab ! For substructure searches, we now also use an RDKit -based solution via SubstructLibrary , which returns results several times faster than our previous implementation. Additionally, structure search results are now sorted by...